Path lengths in protein-protein interaction networks and biological complexity.
نویسندگان
چکیده
We investigated the biological significance of path lengths in 12 protein-protein interaction (PPI) networks. We put forward three predictions, based on the idea that biological complexity influences path lengths. First, at the network level, path lengths are generally longer in PPIs than in random networks. Second, this pattern is more pronounced in more complex organisms. Third, within a PPI network, path lengths of individual proteins are biologically significant. We found that in 11 of the 12 species, average path lengths in PPI networks are significantly longer than those in randomly rewired networks. The PPI network of the malaria parasite Plasmodium falciparum, however, does not exhibit deviation from rewired networks. Furthermore, eukaryotic PPIs exhibit significantly greater deviation from randomly rewired networks than prokaryotic PPIs. Thus our study highlights the potentially meaningful variation in path lengths of PPI networks. Moreover, node eccentricity, defined as the longest path from a protein to others, is significantly correlated with the levels of gene expression and dispensability in the yeast PPI network. We conclude that biological complexity influences both global and local properties of path lengths in PPI networks. Investigating variation of path lengths may provide new tools to analyze the evolution of functional modules in biological systems.
منابع مشابه
Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملIdentification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملComparison of Hubs in Effective Normal and Tumor Protein Interaction Networks
ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملCooperativity in biological systems
Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteomics
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2011